Ensemble de définition d'une fonction

L'ensemble de définition d'une fonction est l'ensemble des antécédents qui admettent une image, à l'exception des valeurs interdites.

Exercice 3C.1

Etudier l'ensemble de définition des fonctions suivantes :

a)
$$f(x) = 7x - 2$$

b)
$$f(x) = x^2 + 3x + 5$$

$$c) \quad f(x) = \frac{5}{x^2 + 1}$$

Exercice 3C.2

Etudier l'ensemble de définition des fonctions suivantes :

a)
$$f(x) = \frac{4}{x+3}$$

b)
$$f(x) = \frac{35}{5 - 2x}$$

c)
$$f(x) = \frac{x+7}{8-7x}$$

Exercice 3C.3

Etudier l'ensemble de définition des fonctions suivantes :

a)
$$f(x) = \frac{77}{(x-10)(8+x)}$$
 b) $f(x) = \frac{2x-9}{3x(3-5x)}$

b)
$$f(x) = \frac{2x-9}{3x(3-5x)}$$

c)
$$f(x) = \frac{x+1}{(5-x)(x+1)}$$

Exercice 3C.4

Etudier l'ensemble de définition des fonctions suivantes :

a)
$$f(x) = \frac{2}{x^2 - 9}$$

$$f(x) = \frac{x-7}{x(x^2-17)}$$

c)
$$f(x) = \frac{9-3x}{(9-3x)(x^2+4)}$$

CORRIGE – NOTRE DAME DE LA MERCI – MONTPELLIER

Exercice 3C.1 *Etudier l'ensemble de définition des fonctions suivantes :*

a)
$$f(x) = 7x - 2$$

→avec les fonctions affines, tous les réels possèdent une image, il n'y a aucune valeur interdite

$$\rightarrow D_f = \mathbb{R}$$

b)
$$f(x) = x^2 + 3x + 5$$

→ tous les réels possèdent une image, il n'y a aucune valeur interdite

$$\rightarrow D_f = \mathbb{R}$$

e)
$$f(x) = \frac{5}{x^2 + 1}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $x^2 + 1 \neq 0$.

→recherche des valeurs interdites :

$$x^2 + 1 = 0 \iff x^2 = -1$$

Or un nombre élevé au carré est toujours positif, il n'y a aucune valeur interdite :

$$D_f = \mathbb{R}$$

Exercice 3C.2 L'ensemble de définition d'une fonction est l'ensemble des valeurs autorisées

a)
$$f(x) = \frac{4}{x+3}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $x+3 \neq 0$.

→recherche des valeurs interdites :

$$x+3=0 \iff x=-3$$

 \rightarrow l'ensemble de définition de f est :

$$D_f = \mathbb{R} - \{-3\} =]-\infty; -3[\cup]-3; +\infty]$$

b)
$$f(x) = \frac{35}{5 - 2x}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $5-2x \neq 0$.

→recherche des valeurs interdites :

$$5-2x=0 \Leftrightarrow -2x=-5 \Leftrightarrow \frac{-2x}{-2}=\frac{-5}{-2} \Leftrightarrow x=\frac{5}{2}$$

 \rightarrow l'ensemble de définition de f est :

$$D_f = \mathbb{R} - \left\{ \frac{5}{2} \right\}$$

c)
$$f(x) = \frac{x+7}{8-7x}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $8-7x \neq 0$.

→recherche des valeurs interdites :

$$8-7x=0 \Leftrightarrow -7x=-8 \Leftrightarrow \frac{-7x}{-7}=\frac{-8}{-7} \Leftrightarrow x=\frac{8}{7}$$

 \rightarrow l'ensemble de définition de f est :

$$D_f = \mathbb{R} - \left\{ \frac{8}{7} \right\}$$

Exercice 3C.3 L'ensemble de définition d'une fonction est l'ensemble des valeurs autorisées

a)
$$f(x) = \frac{77}{(x-10)(8+x)}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $(x-10)(8+x) \neq 0$.

→recherche des valeurs interdites :

$$(x-10)(8+x)=0$$

$$\Rightarrow$$
soit: $x-10=0 \iff x=10$

$$\Rightarrow$$
soit: $8+x=0 \iff x=-8$

 \rightarrow l'ensemble de définition de f est :

$$D_f = \mathbb{R} - \{-8;10\}$$

b)
$$f(x) = \frac{2x-9}{3x(3-5x)}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $3x(3-5x) \neq 0$.

→recherche des valeurs interdites :

$$3x(3-5x)=0$$

$$\Rightarrow$$
 soit: $3x = 0 \iff x = \frac{0}{3} = 0$

⇒soit:
$$3-5x=0 \Leftrightarrow -5x=-3 \Leftrightarrow x=\frac{-3}{-5}=\frac{3}{5}$$

 \rightarrow l'ensemble de définition de f est :

$$D_f = \mathbb{R} - \left\{0; \frac{3}{5}\right\}$$

c)
$$f(x) = \frac{x+1}{(5-x)(x+1)}$$

→ la division par zéro n'est pas permise, nous devons avoir $(5-x)(x+1) \neq 0$.

→recherche des valeurs interdites :

$$(5-x)(x+1)=0$$

$$\rightarrow$$
 soit: $5-x=0 \Leftrightarrow -x=-5 \Leftrightarrow -x\times(-1)=-5\times(-1) \Leftrightarrow x=5$

$$\Rightarrow$$
 soit: $x+1=0 \iff x=-1$

 \rightarrow l'ensemble de définition de f est :

$$D_f = \mathbb{R} - \{-1, 5\}$$

Exercice 3C.4 L'ensemble de définition d'une fonction est l'ensemble des valeurs autorisées Etudier l'ensemble de définition des fonctions suivantes :

a)
$$f(x) = \frac{2}{x^2 - 9}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $x^2 - 9 \neq 0$.

→recherche des valeurs interdites :

$$x^2 - 9 = 0 \iff x^2 = 9$$

⇒ soit
$$x = +\sqrt{9} = 3$$
, soit $x = -\sqrt{9} = -3$ car $3^2 = (-3)^2 = 9$

$$\rightarrow$$
ainsi: $D_f = \mathbb{R} - \{-3, 3\}$.

b)
$$f(x) = \frac{x-7}{x(x^2-17)}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $x^2 - 17 \neq 0$ et $x \neq 0$.

→recherche des valeurs interdites :

$$x^2 - 17 = 0 \iff x^2 = 17$$

$$\Rightarrow$$
 soit $x = +\sqrt{17}$, soit $x = -\sqrt{17}$

car
$$\left(\sqrt{17}\right)^2 = \left(-\sqrt{17}\right)^2 = 17$$

$$\rightarrow$$
ainsi: $D_f = \mathbb{R} - \left\{ -\sqrt{17}; 0; \sqrt{17} \right\}$.

c)
$$f(x) = \frac{9-3x}{(9-3x)(x^2+4)}$$

 \rightarrow la division par zéro n'est pas permise, nous devons avoir $9-3x \neq 0$ et $x^2+4\neq 0$.

→recherche des valeurs interdites :

$$9-3x \neq 0 \Leftrightarrow -3x = -9 \Leftrightarrow \frac{-3x}{-3} = \frac{-9}{-3} \Leftrightarrow x = 3$$

$$x^2 + 4 \neq 0 \iff x^2 \neq -4$$

→or un carré est toujours positif, il n'y a ici aucune valeur interdite

$$\rightarrow$$
 ainsi: $D_f = \mathbb{R} - \{3\}$.